Competition Heating Up For AI-Based Disease Management Players

Working in collaboration with a company offering personal electrocardiograms to consumers, researchers with the Mayo Clinic have developed a technology that detects a dangerous heart arrhythmia. In so doing, the two are joining the race to improve disease management using AI technology, a contest which should pay the winner off handsomely.

At the recent Heart Rhythm Scientific Sessions conference, Mayo and vendor AliveCor shared research showing that by augmenting AI with deep neural networks, they can successfully identify patients with congenital Long QT Syndrome even if their ECG is normal. The results were accomplished by applying AI from lead one of a 12-lead ECG.

While Mayo needs no introduction, AliveCor might. While it started out selling a heart rhythm product available to consumers, AliveCor describes itself as an AI company. Its products include KardiaMobile and KardiaBand, which are designed to detect atrial fibrillation and normal sinus rhythms on the spot.

In their statement, the partners noted that as many as 50% of patients with genetically-confirmed LQTS have a normal QT interval on standard ECG. It’s important to recognize underlying LQTS, as such patients are at increased risk of arrhythmias and sudden cardiac death. They also note that that the inherited form affects 160,000 people in the US and causes 3,000 to 4,000 sudden deaths in children and young adults every year. So obviously, if this technology works as promised, it could be a big deal.

Aside from its medical value, what’s interesting about this announcement is that Mayo and AliveCor’s efforts seem to be part of a growing trend. For example, the FDA recently approved a product known as IDx-DR, the first AI technology capable of independently detecting diabetic retinopathy. The software can make basic recommendations without any physician involvement, which sounds pretty neat.

Before approving the software, the FDA reviewed data from parent company IDx, which performed a clinical study of 900 patients with diabetes across 10 primary care sites. The software accurately identified the presence of diabetic retinopathy 87.4% of the time and correctly identified those without the disease 89.5% of the time. I imagine an experienced ophthalmologist could beat that performance, but even virtuosos can’t get much higher than 90%.

And I shouldn’t forget the 1,000-ton presence of Google, which according to analyst firm CBInsights is making big bets that the future of healthcare will be structured data and AI. Among other things, Google is focusing on disease detection, including projects targeting diabetes, Parkinson’s disease and heart disease, among other conditions. (The research firm notes that Google has actually started a limited commercial rollout of its diabetes management program.)

I don’t know about you, but I find this stuff fascinating. Still, the AI future is still fuzzy. Clearly, it may do some great things for healthcare, but even Google is still the experimental stage. Don’t worry, though. If you’re following AI developments in healthcare you’ll have something new to read every day.

About the author

Anne Zieger

Anne Zieger

Anne Zieger is a healthcare journalist who has written about the industry for 30 years. Her work has appeared in all of the leading healthcare industry publications, and she's served as editor in chief of several healthcare B2B sites.