Alexa Can Truly Give Patients a Voice in Their Health Care (Part 2 of 3)

The first part of this article introduced the problems of computer interfaces in health care and mentioned some current uses for natural language processing (NLP) for apps aimed at clinicians. I also summarized the common goals, problems, and solutions I found among the five finalists in the Alexa Diabetes Challenge. This part of the article shows the particular twist given by each finalist.

My GluCoach from HCL America in Partnership With Ayogo

There are two levels from which to view My GluCoach. On one level, it’s an interactive tool exemplifying one of the goals I listed earlier–intense engagement with patients over daily behavior–as well as the theme of comprehensivenesss. The interactions that My GluCoach offers were divided into three types by Abhishek Shankar, a Vice President at HCL Technologies America:

  • Teacher: the service can answer questions about diabetes and pull up stored educational materials

  • Coach: the service can track behavior by interacting with devices and prompt the patient to eat differently or go out for exercise. In addition to asking questions, a patient can set up Alexa to deliver alarms at particular times, a feature My GluCoach uses to deliver advice.

  • Assistant: provide conveniences to the patient, such as ordering a cab to take her to an appointment.

On a higher level, My GluCoach fits into broader services offered to health care institutions by HCL Technologies as part of a population health program. In creating the service HCL partnered with Ayogo, which develops a mobile platform for patient engagement and tracking. HCL has also designed the service as a general health care platform that can be expanded over the next six to twelve months to cover medical conditions besides diabetes.

Another theme I discussed earlier, interactions with outside data and the use of machine learning, are key to my GluCoach. For its demo at the challenge, My GluCoach took data about exercise from a Fitbit. It can potentially work with any device that shares information, and HCL plans to integrate the service with common EHRs. As My GluCoach gets to know the individual who uses it over months and years, it can tailor its responses more and more intelligently to the learning style and personality of the patient.

Patterns of eating, medical compliance, and other data are not the only input to machine learning. Shankar pointed out that different patients require different types of interventions. Some simply want to be given concrete advice and told what to do. Others want to be presented with information and then make their own decisions. My GluCoach will hopefully adapt to whatever style works best for the particular individual. This affective response–together with a general tone of humor and friendliness–will win the trust of the individual.

PIA from Ejenta

PIA, which stands for “personal intelligent agent,” manages care plans, delivering information to the affected patients as well as their care teams and concerned relatives. It collects medical data and draws conclusions that allow it to generate alerts if something seems wrong. Patients can also ask PIA how they are doing, and the agent will respond with personalized feedback and advice based on what the agent has learned about them and their care plan.

I talked to Rachna Dhamija, who worked on a team that developed PIA as the founder and CEO of Ejenta. (The name Ejenta is a version of the word “agent” that entered the Bengali language as slang.) She said that the AI technology had been licensed from NASA, which had developed it to monitor astronauts’ health and other aspects of flights. Ejenta helped turn it into a care coordination tool with interfaces for the web and mobile devices at a major HMO to treat patients with chronic heart failure and high-risk pregnancies. Ejenta expanded their platform to include an Alexa interface for the diabetes challenge.

As a care management tool, PIA records targets such as glucose levels, goals, medication plans, nutrition plans, and action parameters such as how often to take measurements using the devices. Each caregiver, along the patient, has his or her own agent, and caregivers can monitor multiple patients. The patient has very granular control over sharing, telling PIA which kind of data can be sent to each caretaker. Access rights must be set on the web or a mobile device, because allowing Alexa to be used for that purpose might let someone trick the system into thinking he was the patient.

Besides Alexa, PIA takes data from devices (scales, blood glucose monitors, blood pressure monitors, etc.) and from EHRs in a HIPAA-compliant method. Because the service cannot wake up Alexa, it currently delivers notifications, alerts, and reminders by sending a secure message to the provider’s agent. The provider can then contact the patient by email or mobile phone. The team plans to integrate PIA with an Alexa notifications feature in the future, so that PIA can proactively communicate with the patient via Alexa.

PIA goes beyond the standard rules for alerts, allowing alerts and reminders to be customized based on what it learns about the patient. PIA uses machine learning to discover what is normal activity (such as weight fluctuations) for each patient and to make predictions based on the data, which can be shared with the care team.

The final section of this article covers DiaBetty, T2D2, and Sugarpod, the remaining finalists.

About the author

Andy Oram

Andy Oram

Andy Oram writes and edits documents about many aspects of computing, ranging in size from blog postings to full-length books. Topics cover a wide range of computer technologies: data science and machine learning, programming languages, Web performance, Internet of Things, databases, free and open source software, and more. My editorial output at O'Reilly Media included the first books ever published commercially in the United States on Linux, the 2001 title Peer-to-Peer (frequently cited in connection with those technologies), and the 2007 title Beautiful Code. He is a regular correspondent on health IT and health policy for He also contributes to other publications about policy issues related to the Internet and about trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business.