OCHIN Shows That Messy Data Should Not Hold Back Health Care

The health care industry loves to complain about patient data. It’s full of errors, which can be equally the fault of patients or staff. And hanging over the whole system is lack of interoperability, which hampers research.

Well, it’s not as if the rest of the universe is a pristine source of well-formed statistics. Every field has to deal with messy data. And somehow retailers, financial managers, and even political campaign staff manage to extract useful information from the data soup. This doesn’t mean that predictions are infallible–after all, when I check a news site about the Mideast conflicts, why does the publisher think I’m interested in celebs from ten years ago whose bodies look awful now? But there is still no doubt that messy data can transform industry.

I’m all for standards and for more reliable means of collecting and vetting patient data. But for the foreseeable future, health care institutions are going to have to deal with suboptimal data. And OCHIN is one of the companies that shows how it can be done.

I recently had a chance to talk and see a demo of OCHIN’s analytical tool, Acuere, with CEO Abby Sears and the Vice President of Data Services and Integration, Clayton Gillett. Their basic offering is a no-nonsense interface that lets clinicians and administrator do predictions and hot-spotting.

Acuere is part of a trend in health care analytics that goes beyond clinical decision support and marshalls large amounts of data to help with planning (see an example screen in Figure 1). For instance, a doctor can rank her patients by the number of alerts the system generates (a patient with diabetes whose glucose is getting out of control, or a smoker who hasn’t received counseling for smoking cessation). An administrator can rank a doctor against others in the practice. This summary just gives a flavor of the many services Acuere can perform; my real thrust in this article is to talk about how OCHIN obtains and processes its data. Sears and Gillett talked about the following challenges and how they’re dealing with them.

Acuere Provider Report Card

Figure 1. Acuere Report Card in Acuere

Patient identification
Difficulties in identifying patients and matching their records has repeatedly surfaced as the biggest barrier to information exchange and use in the US health care system. A 2014 ONC report cites it as a major problem (on pages 13 and 20). An article I cited earlier also blames patient identification for many of the problems of health care analytics. But the American public and Congress have been hostile to unique identifiers for some time, so health care institutions just have to get by without them.

OCHIN handles patient matching as other institutions, such as Health Information Exchanges, do. They compare numerous fields of records–not just obvious identifiers such as name and social security number, but address, demographic information, and perhaps a dozen other things. Sears and Gillett said it’s also hard to knowing which patients to attribute to each health care provider.

Data sources
The recent Precision Medicine initiatives seeks to build “a national research cohort of one million or more U.S. participants.” But OCHIN already has a database on 7.6 million people and has signed more contracts to reach 10 million this Fall. Certainly, there will be advantages to the Precision Medicine database. First, it will contain genetic information, which OCHIN’s data suppliers don’t have. Second, all the information on each person will be integrated, whereas OCHIN has to take de-identified records from many different suppliers and try to integrate them using the techniques described in the previous section, plus check for differences and errors in order to produce clean data.

Nevertheless, OCHIN’s data is impressive, and it took a lot of effort to accumulate it. They get not only medical data but information about the patient’s behavior and environment. Along with 200 different vital signs, they can map the patient’s location to elements of the neighborhood, such as income levels and whether healthy food is sold in local stores.

They get Medicare data from qualified entities who were granted access to it by CMS, Medicaid data from the states, patient data from commercial payers, and even data on the uninsured (a population that is luckily shrinking) from providers who treat them. Each institution exports data in a different way.

How do they harmonize the data from these different sources? Sears and Gillett said it takes a lot of manual translation. Data is divided into seven areas, such as medications and lab results. OCHIN uses standards whenever possible and participates in groups that set standards. There are still labs that don’t use LOINC codes to report results, as well as pharmacies and doctors who don’t use RxNorm for medications. Even ICD-10 changes yearly, as codes come and go.

Data handling
OCHIN isn’t like a public health agency that may be happy sharing data 18 months after it’s collected (as I was told at a conference). OCHIN wants physicians and their institutions to have the latest data on patients, so they carry out millions of transactions each day to keep their database updated as soon as data comes in. Their analytics run multiple times every day, to provide the fast results that users get from queries.

They are also exploring the popular “big data” forms of analytics that are sweeping other industries: machine learning, using feedback to improve algorithms, and so on. Currently, the guidance they offer clinicians is based on traditional clinical recommendations from randomized trials. But they are seeking to expand those sources with other insights from light-weight methods of data analysis.

So data can be useful in health care. Modern analytics should be available to every clinician. After all, OCHIN has made it work. And they don’t even serve up ads for chronic indigestion or 24-hour asthma relief.

About the author

Andy Oram

Andy Oram

Andy Oram writes and edits documents about many aspects of computing, ranging in size from blog postings to full-length books. Topics cover a wide range of computer technologies: data science and machine learning, programming languages, Web performance, Internet of Things, databases, free and open source software, and more. My editorial output at O'Reilly Media included the first books ever published commercially in the United States on Linux, the 2001 title Peer-to-Peer (frequently cited in connection with those technologies), and the 2007 title Beautiful Code. He is a regular correspondent on health IT and health policy for HealthcareScene.com. He also contributes to other publications about policy issues related to the Internet and about trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business.